Build TRUSTID solution locally

This document includes step-by-step instructions for building the TRUSTID solution (server,
client applications, mobile application) locally. It requires Docker technology

(https://www.docker.com/).

First, you need to clone the repository of the TRUSTID solution:
git clone https://github.com/cognitiveux/trustid.git

TRUSTID Server
First, go to the source code directory of the final version:

cd trustid/second_period/

Then, extract the trustid-server.zip to get the source code of the backend server:
unzip trustid-server.zip

Then, go to the directory of the backend server:
cd trustid-server/server/

Then, build the Docker image as follows:
docker-compose -f docker-compose.yml build --no-cache

Then, create the Docker network as follows:
docker network create web

To start the Docker containers of the server, issue the following command:
docker-compose -f docker-compose.yml up

Wait until you see on the terminal the following:
Starting development server at http://0.0.0.0:10000/

Interactive Web API: http://localhost:10000/backend/demo/
Documentation: http://localhost:10000/backend/doc/

In another terminal, start the Docker container of the face recognition library as follows:
docker-compose -f docker-compose-face-lib.yml up

Furthermore, you will need to create an App password in your Gmail account. Follow the
instructions here: https://support.google.com/mail/answer/185833 to create an app
password that will be used to send email via the server. Once you have an App password,
modify the following file:

trustid/second_period/trustid-server/server/django_variables.env

and update the values of the following variables accordingly:

SERVER_EMAIL=YOUR_EMAIL@DOMAIN.COM
SERVER_EMAIL_ALIAS=YOUR_EMAIL_ALIAS@DOMAIN.COM
SERVER_EMAIL_PASSWORD=THE_CREATED_APP_PASSWORD

Additional Notes

Create an Instructor account

Fill in the required fields under the /register_user endpoint through the Interactive Web API
or through an API testing tool (e.g., Postman)

Add a new examination
You could either:
e Use the /instructor/add_exam endpoint (requires first to obtain a JWT token via the
/login endpoint and pass it as a Bearer token in the authorization header) or
e |ogin through the TRUSTID client application, go to Management, Add Exam

Enroll students to examination
e Inthe case of UC and UPAT:
o Upload a .csv file with the students’” information exported from other LMS in
the following format:

Csv file format for Windows:

User
Surname Name E-mail Identity Username Group
User_Surnam User_Nam
e e user@example.com 123456 wusername -

Csv file format for macOS:
Course Name user@example.com User Name User_Surname

e Inthe case of UCY (includes Moodle LMS integration):

Setup Moodle base url in the following file:
trustid/second_period/trustid-server/server/trustid_project/settings.py
MOODLE_BASE_URL = "YOUR_MOODLE_BASE_URL_HERE"

Create a Moodle course and manually enroll students from within Moodle.

TRUSTID Windows Client Application
First, go to the source code directory of the final version:

cd trustid/second_period/

Then, extract the trustid-windows.zip to get the source code of the Windows client
application:
unzip trustid-windows.zip

Then, go to the directory of the Windows client application:
cd trustid-windows/

Then, open the solution trustid.sIn in Visual Studio.
Point the server base url to localhost:

Go to trustid-windows/trustid/Globals.cs and change the BASE_API_URL to
http://localhost:10000/backend/

Finally, start the solution in debug mode.

TRUSTID macOS Client Application
First, go to the source code directory of the final version:

cd trustid/second_period/

Then, extract the trustid-macos.zip to get the source code of the macOS client application:
unzip trustid-macos.zip

Then, go to the directory of the macOS client application:
cd trustid-macos/

Then, go to Trustld/Trustld.xcodeproj/ and open the project project.pbxproj in Xcode.

Point the server base url to localhost:

Go to trustid-macos/Trustld/Trustld/Domain/Api/TrustldApi.swift and set the
environment to localhost as follows:

environment:Environment = .localhost

Start the project in debug mode.

TRUSTID Privacy-preserving Mobile Application Wallet
First, go to the source code directory of the final version:

cd trustid/second_period/

Then, extract the trustid-wallet.zip to get the source code of the wallet mobile application:
unzip trustid-wallet.zip

Then, go to the directory of the wallet mobile application:
cd trustid/wallet/

Point the server base url to localhost:

Go to trustid-wallet/ServerlIP.js and change the server_ip variable to the IP address
provided by Expo during application start:

http://LOCAL URL HERE:10000/backend/

Open the project in Visual Studio Code.

You need to install:
e Install npm (https://docs.npmijs.com/downloading-and-installing-node-js-and-npm)

e Install node.js (https://nodejs.org/en/download)
e Setup Expo Go development (https://reactnative.dev/docs/environment-setup)

To install and run the project in a USB-connected device, run the following:
npm install
npm start
Scan the QR code from the Expo Go application (Android) or the Camera app (iOS)

(Optional) To create an Android .apk, run the following:
eas build -p android --profile preview

Notes on the Moodle LMS Integration
Obtain a Moodle token
Send a POST request to MOODLE_BASE_URL + "/login/token.php" using the following:
payload = {
"username": moodle_username,
"password": password,

"service": "moodle_mobile_app"

}
headers = {

'Content-Type': "application/x-www-form-urlencoded",
}

Upon successful response, grab the Moodle token from the response.text json and then the
token variable.

Get Moodle courses
Use the moodle token obtained previously, and send a POST request to MOODLE_BASE_URL
+"/webservice/rest/server.php" using the following:
payload = {
"wstoken": moodle_token,

"wsfunction": "core_course_get _courses_by field",

"moodlewsrestformat": "json"

}
headers = {

'Content-Type': "application/x-www-form-urlencoded",
}

Upon successful response, grab the Moodle courses of the instructor from the response.text
json and then the courses variable. For each moodle course in the courses variable, grab the
course id and the course fullname.

Get enrolled users in each Moodle course
Use the moodle token obtained previously, and for each course id from the previous step, send
a POST request to MOODLE_BASE_URL + "/webservice/rest/server.php" using the following:
payload = {
"wstoken": moodle_token,

n,on

"wsfunction": "core_enrol_get _enrolled_users",
", n:

"moodlewsrestformat": "json",
"courseid": course_id

}
headers = {

'Content-Type': "application/x-www-form-urlencoded",
}

Upon successful response, grab the roles from the roles variable, and for that role check if its
shortname variable is equal to "student", and then grab the "firstname", the "lastname", and
the "email".

